Electrical Discharge Machining (EDM): A Review

Authors

  • Asfana Banu International Islamic University Malaysia
  • Mohammad Yeakub Ali International Islamic University Malaysia http://orcid.org/0000-0002-1580-033X

DOI:

https://doi.org/10.26776/ijemm.01.01.2016.02

Abstract

Electro discharge machining (EDM) process is a non-conventional and non-contact machining operation which is used in industry for high precision products. EDM is known for machining hard and brittle conductivematerials since it can melt any electrically conductive material regardless of its hardness. The workpiece machined by EDM depends on thermal conductivity, electrical resistivity, and melting points of the materials. The tool and the workpiece are adequately both immersed in a dielectric medium, such as, kerosene, deionised water or any other suitable fluid. This paper is reviewed comprehensively on types of EDM operation. A brief discussion is also done on the machining responses and mathematical modelling.

References

1. Abbas, M. N., Solomon, D. G., & Fuad Bahari, M. (2007). A review on current research trends in electrical discharge machining (EDM). International Journal of Machine Tools and Manufacture, 47(7), 1214-1228.

2. Liao, Y. S., Chen, S. T., & Lin, C. S. (2005). Development of a high precision tabletop versatile CNC wire-EDM for making intricate micro parts. Journal of Micromechanics and Microengineering, 15, 245-253.

3. Yoo, H. K., Kwon, W. T., & Kang, S. (2014). Development of a new electrode for micro-electrical discharge machining (EDM) using Ti(C,N)-based cermet. International Journal of Precion Engineering and Manufacturing, 15 (4), 609-616.

4. Hoang, K. T. & Yang, S. H. (2013). A study on the effect of different vibration-assisted methods in micro-WEDM. Journal of Materials Processing Technology, 213, 1616-1622.

5. Hoang, K. T. & Yang, S. H. (2015). A new approach for micro-WEDM control based on real-time estimation of material removal rate. International Journal of Precision Engineering and Manufacturing, 16 (2), 241-246.

6. Debroy, A. & Chakraborty, S. (2013). Non-conventional optimization techniques in optimizing non-traditional machining processes: a review. Management Science Letters, 3(1), 23-38.

7. Yan, M. T. (2010). An adaptive control system with self-organizing fuzzy sliding mode control strategy for micro wire-EDM machines. International Journal of Advanced Manufacturing Technology, 50, 315-328.

8. Pour, G. T., Pour, Y. T., & Ghoreishi, M. (2014). Electro-spark nanomachining process simulation. International Journal of Materials, Mechanics and Manufacturing, 2 (1).

9. Pour, G. T., Pour, Y. T., & Ghoreishi, M. (2014a). Thermal model of the electro-spark nanomachining process. International Journal of Materials, Mechanics and Manufacturing, 2 (1), 56-59.

10. Mohri, N., Fukuzawa, Y., Tani. T., Saito, N., & Furutani, K. (1996). Assisting electrode method for machining insulating ceramics. Annals of the CIRP, 45, 201-204.

11. Mohri, N., Fukusima, Y., Fukuzawa, Y., Tani, T., & Sato, N. (2003). Layer generation process on work-piece in electrical discharge machining. CIRP Annals – Manufacturing Technology, 52 (1), 157-160. DOI:10.1016/S0007-8506(07)60554-X.

12. Mahardika, M., Tsujimoto, T., & Mitsui, K. (2008). A new approach on the determination of ease of machining by EDM processes. International Journal of Machine Tools and Manufacture, 48, 746-760. DOI:10.1016/j.ijmachtools.2007.12.012.

13. Chow, H. M., Yang, L. D., Lin, C. T., & Chen,Y. F. (2008). The use of SiC powder in water as dielectric for micro-slit EDM machining. Journal of Materials Processing Technology, 195 (1-3), 160–170.

14. Chen, Y. F., Lin, Y. C., Chen, S. L., & Hsu, L. R. (2009). Optimization of electrodischarge machining parameters on ZrO2 ceramic using the Taguchi method. Proceeding of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 224, 195-205.

15. Jahan, M. P., Wong, Y. S., & Rahman, M. (2009). A study on the quality micro-hole machining of tungsten carbide by micro-EDM process using transistor and RC-type pulse generator. Journal of Materials Processing Technology, 209, 1706-1716. DOI:10.1016/j.jmatprotec.2008.04.029.

16. Masuzawa, T. (2000). State of the art of micromachining. CIRP Annals – Manufacturing Technology, 49 (2), 473-488. DOI:10.1016/S0007-8506(07)63451-9.

17. Schubert, A., Zeidler, H., Hackert, M., Schneider, J., & Hahn, M. (2013). Enhancing micro-EDM using ultrasonic vibration and approaches for machining of nonconducting ceramics. Journal of Mechanical Engneering, 59 (3), 156-164. DOI:10.5545/sv-jme.2012.442.

18. Ho, K. H. & Newman, S. T. (2003). State of the art electrical discharge machining (EDM). International Journal of Machine Tools and Manufacture, 43, 1287-1300. DOI:10.1016/S0890-6955(03)00162-7.

19. Chakraborty, S., Dey, V., & Ghosh, S. K. (2015). A review on the use of dielectric fluids and their effects in electrical discharge machining characteristics. Precision Engineering, 40, 1-6.

20. Di, S., Chu, X., Wei, D., Wang, Z., Chi, G., & Liu, Y. (2009). Analysis of kerf width in micro-WEDM. International Journal of Machine Tools and Manufacture, 49(10), 788-792.

21. Ali, M. Y., Karim, A. N. M, Adesta, E. Y. T., Ismail, A. F., Abdullah, A. A., & Idris, M. N. (2010). Comparative study of conventional and micro WEDM based on machining of meso/micro sized spur gear. International Journal of Precision Engineering and Manufacturing, 11 (5), 779-784.

22. Chen, Z., Huang, Y., Huang, H., Zhang, Z., & Zhang, G. (2015). Three-dimensional characteristics analysis of the wire-tool vibration considering spatial temperature field and electromagnetic field in WEDM. International Journal of Machine Tools and Manufacture, 92, 85-96.

23. Patil, P. A. & Waghmare, C. A. (2014). A review on advances in wire electrical discharge machining. In Proceedings of the International Conference on Research and Innovation in Mechanical Engineering (pp. 179-189). Springer India.

24. Azhiri, R. B., Teimouri, R., Baboly, M. G., & Laseman, Z. (2014). Application of Taguchi, ANFIS and grey relational analysis for studying, modelling and optimization of wire EDM process while using gaseous media. International Journal of Advanced Manufacturing Technology, 71 (1), 279-295.

25. Tosun, N. & Cogun, C. (2003). An investigation on wire wear in WEDM. Journal of Materials Processing Technology, 134, 273-278.

26. Schubert, A., Ziedler, H., Wolf, N., & Hackert, M. (2011). Micro electro discharge machining of electrically nonconductive ceramics. AIP Conference Proceedings, 1353, (1) 1303-1308.

27. Dhanik, S. & Joshi, S. S. (2005). Modelling of a single resistance capacitance pulse discharge in micro-electro discharge machining. Journal of Manufacturing Science and Engineering, 127 (4), 759-767.

28. Das, S. & Joshi, S. S. (2010). Modeling of spark erosion rate in microwire-EDM. International Journal of Advanced Manufacturing Technology, 48 (5-8), 581-596.

29. Pecas, P. & Henriques, E. (2008). Electrical discharge machining using simple and powder-mixed dielectric: the effect of the electrode area in the surface roughness and topography. Journal of Materials Processing Technology, 200, 250-258.

30. Asfana, A., Ali, M. Y., Mohamed, A. R., & Hung, W. N. P. (2015). Material removal rate of zirconia in electro discharge micromachining. Advanced Materials Research, 1115, 20-23.

31. Hosel, T., Cvancara, T., Ganz,T., Muller, C., & Reinecke, H. (2011). Characterization of high aspect ratio non-conductive ceramic microstructures made by spark erosion. Microsystem Technologies, 17, 313–318.

32. Hosel, T., Muller, C., & Reinecke, H. (2011a). Spark erosive structuring of electrically nonconductive zirconia with an assisting electrode. CIRP Journal of Manufacturing Science and Technology, 4, 357-361.

33. Schubert, A. & Zeidler, H. (2009). Machining of nonconductive ZrO2 ceramics with micro-EDM. In: Van Brussel, H.; Brinksmeier, E.; Spaan, H. (ed): Proceedings of the 9th International Conference of the European Society for Precision Engineering and Nanotechnology, ISBN: 978-0-9553082-6-0, S. 6-9 (Bd.2).

34. Muttamara, A., Janmanee, P., & Fukuzawa, Y. (2010). A Study of Micro-EDM on Silicon Nitride Using Electrode Materials. International Transaction Journal of Engineering, Management, & Applied Science & Technologies, 1 (1), 001-007.

35. Mohamed, A. R., Asfana, B., & Ali, M. Y. (2014). Investigation of recast layer of non-conductive ceramic due to micro-EDM. Advanced Materials Research, 845, 857-861.

36. Muttamara, A., Fukuzawa, Y., Mohri, N., & Tani, T. (2009). Effect of electrode material on electrical discharge machining of alumina. Journal of Materials Processing Technology, 209, 2545-2552.

37. Chen, Y. F., Lin, Y. C., Chen, S. L., & Hsu, L. R. (2009). Optimization of electrodischarge machining parameters on ZrO2 ceramic using the Taguchi method. Journal of Engineering Manufacture, 224, 195-205.

38. Banu, A., Ali, M. Y., & Rahman, M. A. (2014). Micro-electro discharge machining of non-conductive zirconia ceramic: investigation of MRR and recast layer hardness. International Journal of Advanced Manufacturing Technology, 75, 257-267.

39. Liu, Y. H., Li, X. P., Ji, R. J., Yu, L. L., Zhang, H. F., & Li, Q. Y. (2008). Effect of technological parameter on the process performance for electric discharge milling of insulating Al2O3 ceramic. Journal of Materials Processing Technology, 208, 245-250.

40. Fukuzawa, Y., Mohri, N., Tani, T., & Muttamara, A. (2004). Electrical discharge machining properties of noble crystals. Journal of Materials Processing Technology, 149, 393-397.

41. Pandey, A. & Singh, S. (2010). Current research trends in variants of electrical discharge machining: a review. International Journal of Engineering Science and Technology, 2 (6), 2172-2191.

42. Kunieda, M. & Furudate, C. (2001). High precision finish cutting by dry WEDM. CIRP Annals – Manufacturing Technology, 50 (1), 121-124.

43. Pradeep, G. M. & Dani, M. S. H. (2015). A review on the use of pollution free dielectric fluids in wire electrical discharge machining process. Journal of Chemical and Pharmaceutical Sciences, (7), 312-315.

44. Dhakar, K & Dvivedi, A. (2016). Parametric evaluation on near-dry electric discharge machining. Materials and Manufacturing Processes, 31, 413-421.

45. Zhang, Q. H., Zhang, J. H., Ren, S. F., Deng, J. X., & Ai, X. (2004). Study on technology of ultrasonic vibration aided electrical discharge machining in gas. Journal of Materials Processing Technology, 149, 640-644.

46. Khatri, B. C., Rathod, P., & Valaki, J. B. (2015). Ultrasonic vibration-assisted electric discharge machining: a research review. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 1-12. DOI: 10.1177/0954405415573061.

47. Wang, T., Xie, S. Q., Xu, X. C., Chen, Q., Lu, X. C., & Zhou, S. H. (2012). Application of uniform design in experiments of WEDM in gas. Advanced Materials Research, 426, 11-14.

48. Mahendran, S. & Ramasamy, D. (2010). Micro-EDM: overview and recent developments. In National Conference in Mechanical Engineering Research and Postgraduate Students (1st NCMER 2010), 26-27 May 2010, Pahang, Malaysia, 480-494.

49. Fujiki, M., Ni, J., & Shih, A. J. (2011). Tool path planning for near-dry EDM milling with lead angle on curved surfaces. Journal of Manufacturing Science and Engineering, 133(5), 051005.

50. Besliu, I., Schulze, H. P., Coteata, M., & Amarandei, D. (2010). Study on the dry electrical discharge machining. International Journal of Material Forming, 3(1), 1107-1110.

51. Paul, G., Roy, S., Sarkar, S., Hanumaiah, N., & Mitra, S. (2013). Investigations on influence of process variables on crater dimensions in micro-EDM of titanium aluminide alloy in dry and oil dielectric media. International Journal of Advanced Manufacturing Technology, 65, 1009-1017.

52. Skrabalak, G. & Kozak, J. (2010). Study on dry electrical discharge machining. Wear, 5, 7.

53. Wang, T. & Kunieda, M. (2004). Dry WEDM for finish cut. Key Engineering Materials, 259-260, 562-566.

54. Kunieda, M., Lauwers, B., Rajurkar, K. P., & Schumacher, B. M. (2005). Advancing EDM through fundamental insight into the process. CIRP Annals-Manufacturing Technology, 54(2), 64-87.

55. Liqing, L. & Yingjie, S. (2013). Study of dry EDM with oxygen-mixed and cryogenic cooling approaches. Procedia CIRP, 6, 344-350.

56. Singh, P., Chaudhary, A. K., Singh, T., & Rana, A. K. (2015). Comparison of outputs for dry EDM and EDM with oil: a review. International Journal for Research in Emerging Science and Technology, 2(6), 45-49.

57. Yu, Z. B., Takahashi, J., Nakajima, N., Sano, S., & Kunieda, M. (2005). Feasibility of 3-D surface machining by dry EDM. International Journal of Electrical Machining, 10, 15-20.

58. Leao, F. N. & Pashby, I. R. (2004). A review on the use of environmentally-friendly dielectric fluids in electrical discharge machining. Journal of Materials Processing Technology, 149, 341-346.

59. Besliu, I. & Coteata, M. (2009). Characteristics of the dry electrical discharge machining. Nonconventioal Technologies, 2, 5-8.

60. Teimouri, R. & Baseri, H. (2013). Experimental study of rotary magnetic field-assisted dry EDM with ultrasonic vibration of workpiece. International Journal of Advanced Manufacturing Technology, 67(5-8), 1371-1384.

61. Jahan, M. P., Rahman, M., & Wong, Y. S. (2011). A review on the conventional and micro-electrodischarge machining of tungsten carbide. International Journal of Machine Tools and Manufacture, 51, 837-858.

62. Yu, Z., Jun, T., & Masanori, K. (2004). Dry electrical discharge machining of cemented carbide. Journal of Materials Processing Technology, 149(1), 353-357.

63. Chandra, B., Singh, H., & Garg, J. (2011). A review on emerging areas of interest in electrical discharge machining. International Journal of Advanced Engineering Technology, 2(3), 1-9.

64. Hoang, K. T. & Yang, S. H. (2015a). Kerf analysis and control in dry micro-wire electrical discharge machining. International Journal of Advanced Manufacturing Technology, 78, 1803-1812.

65. Ghodsiyeh, D., Golshan, A., & Shirvanehdeh, J. A. (2013). Review on current research trends in wire electrical discharge machining (WEDM). Indian Journal of Science and Technology, 6(2), 4128-4140.

66. Okada, A., Uno, Y., Onoda, S., & Habib, S. (2009). Computational fluid dynamics analysis of working fluid flow and debris movement in wire EDMed kerf. CIRP Annals-Manufacturing Technology, 58(1), 209-212.

67. Okada, A., Uno, Y., Nakazawa, M., & Yamauchi, T. (2010). Evaluations of spark distribution and wire vibration in wire EDM by high-speed observation. CIRP Annals-Manufacturing Technology, 59(1), 231-234.

68. Rakwal, D. & Bamberg, E. (2009). Slicing, cleaning and kerf analysis of germanium wafers machined by wire electrical discharge machining. Journal of Materials Processing Technology, 209(8), 3740-3751.

69. Dave, H. K., Desai, K. P., & Raval, H. K. (2012). Modelling and analysis of material removal rate during electro discharge machining of Inconel 718 under orbital tool movement. International Journal of Manufacturing Systems, 2 (1), 12-20.

70. Somashekhar, K. P., Ramachandran, N., & Mathew, J. (2010). Optimization of material removal rate in micro-EDM using artificial neural network and genetic algorithms. Materials and Manufacturing Processes, 25, 467-475.

71. Yang, R. T., Tzeng, C. J., Yang, Y. K., & Hsieh, M. H. (2012). Optimization of wire electrical discharge machining process parameters for cutting tungsten. International Journal of Advanced Manufacturing Technology, 60(1-4), 135-147.

72. Somashekhar, K. P., Mathew, J., & Ramachandran, N. (2012). A feasibility approach by simulated annealing on optimization of micro-wire electric discharge machining parameters. International Journal of Advanced Manufacturing Technology, 61(9-12), 1209-1213.

73. Ali, M. Y., Mohamed, A. R., Khan, A. A., Asfana, B., Lutfi, M., & Fahmi, M. I. (2013). Empirical modelling of vibration in micro end milling of PMMA. World Applied Sciences Journal (Mathematical Applications in Engineering), 21, 73-78.

Downloads

Additional Files

Published

2016-09-03

How to Cite

Banu, A., & Ali, M. Y. (2016). Electrical Discharge Machining (EDM): A Review. International Journal of Engineering Materials and Manufacture, 1(1), 3–10. https://doi.org/10.26776/ijemm.01.01.2016.02

Issue

Section

Review

Most read articles by the same author(s)