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ABSTRACT 
Verification and validation are the main two vital items to consider a CFD simulation project. In the proposed 
research article these steps are applied for a vertical round submerged jet into a cylindrical bath. An axisymmetric 
domain minimized the computational cost as the Navier-Stokes equation is simplified and a finite volume method 
(FVM) is used to solve continue and momentum equation using commercial computational fluid dynamics, CFD 
(Fluent) software. Verification refers to solving equation right, and a step-by-step grid independence tests were 
performed. For validation, experimental data was produced under the same ARC funding using laser Doppler 
velocimetry (LDV). Among the turbulence model, SST  was found to predict the flow behavior better than k -ε  
realization or RSM  models.  
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LIST OF SYMBOL/ABBREVIATION 
 

Rej   Jet Reynolds no 

cD   Cylinder diameter (m) 

cH   Cylinder height (m) 

0d   Jet diameter (m) 

h   Water level (m) 

RSM   Reynold Stress Model 

 
 
1 INTRODUCION 
Numerous papers are published without a strategic verification and without coordinating with the experimentalists. 
So in many cases the mesh in CFD is not optimized. On the other hand, the published experimental data are not 
well-analyzed or well-presented. The boundary conditions for the CFD do not always represent the total physics. 
There are difficulties for any experimental data to produce; not the same way there are problems in all the turbulence 
models of CFD.  

A receiving bath when receives a submerged jet [1,2], the fluid decelerates and spreads, and this process continues 
as it entrains the surrounded liquid. To uniform the turbulence intensity and effect on the receiving bath, a 
honeycomb [3] can be used. This might also suppress a possible swirl [4] which can be ignored for practical purpose. 
The CFD [5-7] investigations performed previously in this area were without any proper verification of the solution, 
the computational Central Line velocity can be plotted against the experimental data at the same location. One of 
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the best set of data is available from Bayly et al. [8]. Without verification, previous authors have performed an 
investigation, e.g., a mesh of 54X44 [8] is not enough as shown in the current investigation. A large number of studies 
is not justified in any CFD investigation performed by Devahastin and Mujumdar [9]. Also, the CFD needs to be 
verified systematically for laminar and turbulence flow separately and independently [10]. The unnecessarily fined 
mesh could lead a wrong conclusion.   

The very wrong approach to validate CFD results without satisfying the verification requirement. This is not a 
crude practice. It may be the case that the researchers are using more or less mesh than it requires. For example, 

Wilson and Imber [11] studied a computational model of a rectangular jet ( 0 0Re l
j

l

d u ρ
µ

= =1.49X105) with aspect 

ratio 10. It would be interesting to investigate the effect of doubling the mesh of Wilson and Imber [11]. This 
investigation could be helpful for more applied pipeline oil flow under the sea [12] or under the ground [13]. 
The approach used by Devahastin and Mujumdar [9] would force the researchers to cause unnecessary wastes of 
computing resources (by running longer time for low Reynolds number). This approach is not followed here. Rather, 
each case has been checked for grid independence. 

Here in the research: next section defines the computational physics, followed by experimental setup and 
computational models, results are presented with verification and validation. The conclusions are added next. 
Presenting the grid independence behavior offers more satisfaction [14]. The mixing zone analysis needs the outcome 
of a submerged jet [15]. When the free surface is involved like in an in an impinging jet, the flow becomes more 
complex [16]. The heated flow the validation process is very complicated as the experimental process has limitations 
as in these cases [17, 18]. For a bigger domain [19], the experimental data is not easy to collect. For simplicity, the 
oscillation or fluctuation [20] is not considered which did introduce error. All kind of absorption [21, 22] of air is 
neglected for simplicity. 
 
2 COMPUTATIONAL PHYSICS 
An axisymmetric geometry is considered which represent the cylindrical receiving bath of 500 mm long (

c
H ) with a 

diameter (
cD ) of 90 mm (Figure 1). At the center of the cylinder from the top roof the nozzle comes vertically down 

and the tip of the nozzle is 355 mm above the base or 145 mm below the top of the cylinder wall, only 145 mm is 
inside the receiving cylindrical bath (the rest 55 mm is not shown). Concerning Figure 1, outlet pipe the jet is located  
0≤ r ≤6  and cylinder is located at -145≤ X ≤355 mm and 0≤ r ≤45 mm,  and inlet jet is defined as 0≤ r ≤4.8 
mm for the inlet jet, 355mm≤ X ≤555 mm and mm for the outlet pipe in the bottom.  

An inlet boundary condition was set at nozzle inlet, and this is 200 mm of length. An outlet pipe BC was used at 
the domain outlet. The tip of the exit pipe is 200 mm below the base. The mass flow rate of the inlet a outlet are 
kept same so there is no rise of liquid air surface level while running the experimental or computation test. It was 
easier to set a no accumulation zone; however, experimentally its was nearly hard. The circular outlet pipe (Figure 
1) will not be shown in the rest of the figures of this paper.  
 
3 EXPERIMENTAL SETUP 
For the submerged liquid jet, Laser Doppler Velocimetry (LDV) data were taken to validate the computational results 
of the primary flow. A schematic diagram of the experimental arrangement is shown in Figure 2.  The major 

equipment consists is a cylindrical receiving bath ( cD =90 mm, cH =500 mm), a nozzle ( 0d =9.6 mm), a reservoir 

tank, a pump to recirculate the water. The size of the nozzle, the receiving cylinder, and the outlet are identical to 
those in computational models. The level of water in the cylinder is kept constant by controlling the flow.  

For a 100 mm nozzle submergence depth, there was no significant oscillation in the free liquid surface in the 
cylindrical bath. So for a 100 mm of h , the free surface was considered as a wall (with zero shear stress) in the 
computational models. In the experiments, even though efforts were made to keep a ‘no accumulation’ of water in 
the cylindrical bath, in reality, it was not strictly possible. This minor variation was unfavorable. The liquid in the 
bath was stationary before switching on liquid jet both for the computational techniques and for experimentations.  
 

 
4 COMPUTATIONAL MODELS 
Continuity, momentum equations along with ε−k  Realizable [23], RSM  [24, 25], and SST  [26] turbulence 
models were used to solve the fluid flow by an SJ. The detail verification of grid refinement is presented in the results 
section. The level of convergence was of the order of 10-6. Consistency higher order discretizations and pressure-
velocity coupling [27] were used in all cases studied. The computational modeling parameters were determined after 
verification [28] and validations [29]. 
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Figure 1: A schematic diagram of the computational domain of the submerged liquid jet apparatus with the boundary 

conditions [ ind =9.6 mm, cD =90 mm, lH =455 mm, cH =500 mm, h =100 mm, outlet nozzle, 0utd =12 mm]. 

 
 

 
 

Figure 2: Experimental Set Up of the Submerged Liquid Jet 
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5 RESULTS AND DISCUSSIONS 
Using refinement as presented in this section ensures the less grid dependence solution. All the turbulence parameters 

(turbulent kinetic energy k , turbulent intensity ( 2 3 /k U ), turbulent dissipation rate,ε ) and primary flow 

parameters (velocity) are examined for this purpose as the refinement performed, even though a few are presented 
here.  

Figure 3 presents a typical case where the center line velocity magnitude (m/s) (left-hand side) and center line 
turbulence kinetic energy ( k ) (right-hand side) have been plotted against nondimensional distance from the nozzle 
( / cX D ) for four quadrilateral meshes (mesh0=32,550, mesh1=40,100, mesh2=43,875, mesh3=54,000). In both 

these cases, it is clearly shown that on mesh3, the solution parameters have reached their asymptotic levels. Even 
mesh2 and mesh1 are fine enough to predict the velocity and turbulent kinetic energy. The mesh density is higher 
near the nozzle region compared to the rest of the domain to capture the sharp gradient of solution parameters. 
Figure 3 (left) shows that at about 0.75-1.25 of / cX D , the center line velocity is most sensitive to the choice of grid 

size. It is repeatedly found in many CFD papers that the authors check only one parameter (especially velocity 
components) as the refinement continues; however, Figure 3 (right-hand side) show that the turbulent kinetic energy 
does not behave the same way as the velocity magnitude (left-hand side of Figure 3). The peak kinetic turbulent 
energy is at 1.0 / cX D  (right-hand side of Figure 3) and k  is very sensitive in the (0.60-1.10) / cX D  region. Sensitivity 

of  turbulence intensity (left hand side, Figure 4), turbulent dissipation rate (right hand side, Figure 5), rate of change 
of axial velocity in the axial direction (left hand side, Figure 5) and strain rate (right hand side, Figure 5) with the 
four meshes considered are presented.  
 
 
 

 
 

Figure 3: Center line velocity magnitude (m/s) and turbulent kinetic energy for four different meshes [ qV =12 

liter/min, symbols are shown in Figure 1]. 
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Figure 4: Left: center line turbulent intensity, right turbulent dissipation rate for three different meshes [ qV =12 

liter/min]. 
 
 
 
The turbulent intensity (left-hand side of Figure 4) is more sensitive at the inlet ( / cX D =0.50-1.0), whereas the 

turbulent dissipation rate (Figure 4, right) has a similar pattern to the turbulent kinetic energy (Figure 3, right). It 
should be noted that the inlet liquid jet is 40 times in length the nozzle radius for all the results presented. Hence 
when the liquid jet exits to the cylindrical bath ( / cX D =0.0), the flow is fully developed. At the inlet, the turbulent 

intensity ( 02 3 * 100k U ) was set 10%, and after flowing 200 mm ( nL  of Figure 1), at the nozzle exit ( / cX D

=0.0) to the receiving bath, the developed turbulent intensity is ~11% as found in Figure 4 (left-hand side). The rate 
of change of solution parameters is more sensitive to grid size as shown Figure 5. The left of Figure 5 shows that rate 
of change of axial velocity along an axial direction, which suggests that /dU dX  is more sensitive than the 

corresponding velocity (left-hand side of Figure 3). However, solutions on mesh3 have reached the asymptotic level 
(Figure 3, Figure 4 and Figure 5). The center line strain rate (right of Figure 5) is even more sensitive on mesh size, 
however, again found that the strain rate of the centre line on mesh3 (right-hand side of Figure 5) is less dependent 
on the mesh. In fact, solution on mesh2 is fine enough to predict the center line solution parameters. 
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Figure 5: Left: center line axial velocity gradient ( dXdU / ), right: center line strain rate for three different meshes  
[ qV =12 liter/min]. 

 
 
The verification of the dependence of solution parameters on grid size in the center line does not guarantee that the 
solution is independent of the grid in the rest of the domain. The variations of two solution parameters, e.g., axial 
velocity and turbulent kinetic energy at 100 mm ( / cX D =1.11) down from the nozzle along the non-dimensional 

radial direction ( cRr / ) are shown in Figure 6, left and right, respectively. Figure 6 shows that up to cRr / =0.18, 

both the axial velocity and turbulent kinetic energy are sensitive to grid size. However, the mesh3 solution does not 
significantly differ from the solution on mesh2. Where the gradient of solution parameters is higher, the solution 
parameters (velocity, turbulent kinetic energy, turbulent intensity, turbulent dissipation rate, etc) are more sensitive 
to mesh size compared to the rest of the domain. In all the sections presented next, only mesh2 is used which is less 
dependent on mesh size as shown in general. The results in Figure 6 also indicates that the local refinement is necessary 
to capture the physics in the core of the jet as concluded by others [30] as well. Figure 7 presents the center line 
mean velocity magnitude (left-hand side) and center line turbulent kinetic energy ( k ) (right-hand side) as a function 

of dimensionless distance from the nozzle exit ( / cX D ) for k -ε  Realizable (referred as KERZ), RSM  and SST  

turbulence models. The black squares (Figure 7) show the experimental data.  
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Figure 6: Radial variation turbulent kinetic energy (left) and turbulent intensity (right) at 100 mm below the nozzle 

for three different meshes [ qV =12 liter/min]. 

 
 
The experimental velocity magnitude (left of Figure 7) is calculated by the sqrt of 3 velocity components

( )2 2 2
x y zv v v+ + . Figure 7 (left) shows in terms of velocity magnitude production, both k -ε  Realizable and 

RSM  are of same accurate for / cX D =1.0-3.0, however, for / cX D <0, RSM is better. SST is the better in 

predicting the center line velocity. Within / cX D =0.8-1.0 and / cX D =2.0-3.0, a higher discrepancy is noticed. The 

former discrepancy is probably because SST is not very accurate in predicting sharp gradient in velocity. The second 
discrepancy is due to the bottom exit. The solution is not steady near the exit of the domain.  

Figure 7 (right) shows that in the range of / cX D =0-1.0, k -ε  Realizable and SST  fail to predict the turbulent 

kinetic energy, whereas the RSM  can predict the k  better. The experimental turbulent kinetic energy is calculated 

as ( )2 2 21

2 x y zσ σ σ+ + , where iσ  is the root mean square velocity components. Next, to the nozzle exit, the higher 

gradient of velocity (left of Figure 6) exists, which may result in high turbulence as can be seen from Figure 7 (right). 
From Figure 5, the mean axial velocity is same up to 0.75 cX D , after this, there is a sharp decrease in axial velocity 

resulting in higher turbulence kinetic energy. It is ongoing on how to calculate the experimental turbulent kinetic 

energy. The non-isentropic  experimental yσ compared to xσ  is carefully noticed. 
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Figure 7: Computational (solid lines) and experimental (black squares) centre line velocity magnitude (m/s) and 

turbulence kinetic energy ( k ) [ qV =12 litre/min]. 

 
 
6 CONCLUSIONS 
The step-by-step verification and validation process will remind the researchers how important it is to follow the 
steps of these processes. Forced to consider to an axisymmetric flow, computationally it was cheap, which will serve 
the purpose of many industrial applications. It was found the SST  model predicts the flow field more closely to 

the experimental data compared to k -ε  Realizable and RSM . 
The models developed here could easily be broadened for liquid jets with a definite swirling flow. However, in 

most cases, the swirling nature is challenging to report from the experimental data. The experimental data could be 
used to test any CFD code, as shown here. 
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