TY - JOUR AU - Yong, Ah Pis AU - Islam, Md. Aminul AU - Hasan, Nurul PY - 2017/12/10 Y2 - 2024/03/29 TI - The Effect of pH and High-Pressure Homogenization on Droplet Size JF - International Journal of Engineering Materials and Manufacture JA - IJEMM VL - 2 IS - 4 SE - Review DO - 10.26776/ijemm.02.04.2017.05 UR - https://deerhillpublishing.com/index.php/ijemm/article/view/38 SP - 110-122 AB - <p>The aims of this study are to revisit the effect of high pressure on homogenization and the influence of pH on the emulsion droplet sizes. The high-pressure homogenization (HPH) involves two stages of processing, where the first stage involves in blending the coarse emulsion by a blender, and the second stage requires disruption of the coarse emulsion into smaller droplets by a high-pressure homogenizer. The pressure range in this review is in between 10-500 MPa. The homogenised droplet sizes can be reduced by increasing the homogenization recirculation, and there is a threshold point beyond that by applying pressure only, the size cannot be further reduced. Normally, homogenised emulsions are classified by their degree of kinetic stability. Dispersed phase present in the form of droplets while continuous phase also known as suspended droplets. With a proper homogenization recirculation and pressure, a more kinetically stable emulsion can be produced. The side effects of increasing homogenization pressure are that it can cause overprocessing of the emulsion droplets where the droplet sizes become larger rather than the expected smaller size. This can cause kinetic instability in the emulsion. The droplet size is usually measured by dynamic light scattering or by laser light scattering technique. The type of samples used in this reviews are such as chocolate and vanilla based powders; mean droplet sizes samples; basil oil; tomato; lupin protein; oil; skim milk, soymilk; coconut milk; tomato homogenate; corn; egg-yolk, rapeseed and sunflower; Poly(4-vinylpyridine)/silica; and Complex 1 until complex 4 approaches from author case study. A relationship is developed between emulsion size and pH. Results clearly show that lower pH offers smaller droplet of emulsion and the opposite occurs when the pH is increased.</p> ER -